In Vivo Optogenetic Stimulation of Neocortical Excitatory Neurons Drives Brain-State-Dependent Inhibition

نویسندگان

  • Celine Mateo
  • Michael Avermann
  • Luc J. Gentet
  • Feng Zhang
  • Karl Deisseroth
  • Carl C.H. Petersen
چکیده

BACKGROUND Synaptic interactions between excitatory and inhibitory neocortical neurons are important for mammalian sensory perception. Synaptic transmission between identified neurons within neocortical microcircuits has mainly been studied in brain slice preparations in vitro. Here, we investigate brain-state-dependent neocortical synaptic interactions in vivo by combining the specificity of optogenetic stimulation with the precision of whole-cell recordings from postsynaptic excitatory glutamatergic neurons and GFP-labeled inhibitory GABAergic neurons targeted through two-photon microscopy. RESULTS Channelrhodopsin-2 (ChR2) stimulation of excitatory layer 2/3 barrel cortex neurons evoked larger and faster depolarizing postsynaptic potentials and more synaptically driven action potentials in fast-spiking (FS) GABAergic neurons compared to both non-fast-spiking (NFS) GABAergic neurons and postsynaptic excitatory pyramidal neurons located within the same neocortical microcircuit. The number of action potentials evoked in ChR2-expressing neurons showed low trial-to-trial variability, but postsynaptic responses varied strongly with near-linear dependence upon spontaneously driven changes in prestimulus membrane potential. Postsynaptic responses in excitatory neurons had reversal potentials, which were hyperpolarized relative to action potential threshold and were therefore inhibitory. Reversal potentials measured in postsynaptic GABAergic neurons were close to action potential threshold. Postsynaptic inhibitory neurons preferentially fired synaptically driven action potentials from spontaneously depolarized network states, with stronger state-dependent modulation in NFS GABAergic neurons compared to FS GABAergic neurons. CONCLUSIONS Inhibitory neurons appear to dominate neocortical microcircuit function, receiving stronger local excitatory synaptic input and firing more action potentials compared to excitatory neurons. In mouse layer 2/3 barrel cortex, we propose that strong state-dependent recruitment of inhibitory neurons drives competition among excitatory neurons enforcing sparse coding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex.

Synaptic interactions between nearby excitatory and inhibitory neurons in the neocortex are thought to play fundamental roles in sensory processing. Here, we have combined optogenetic stimulation, whole cell recordings, and computational modeling to define key functional microcircuits within layer 2/3 of mouse primary somatosensory barrel cortex. In vitro optogenetic stimulation of excitatory l...

متن کامل

Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies

To study the olivary input to the cerebellar nuclei (CN) we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2) in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC) and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO) with a blue laser (single pulse, 10-50 ms duration). Peri-stimulus histograms (PSTHs...

متن کامل

Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy.

Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger absence seizures. Most previous studies have been purely correlational, and it remains unc...

متن کامل

Seizure Transitions in Primary Generalized Epilepsy

14 Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. 15 Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that 16 rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger 17 absence seizures. Most previous studies have been purely correlational, and it...

متن کامل

Neocortical Somatostatin Neurons Reversibly Silence Excitatory Transmission via GABAb Receptors

BACKGROUND Understanding the dynamic range for excitatory transmission is a critical component of building a functional circuit diagram for the mammalian brain. Excitatory synaptic transmission is typically studied under optimized conditions, when background activity in the network is low. The range of synaptic function in the presence of inhibitory and excitatory activity within the neocortica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011